
SCIENTIFIC PROGRAMMING IN PYTHON

IAN HOFFECKER
ian.hoffecker@ki.se

Department of Medical Biochemistry and
Biophysics
Karolinska Institutet, Stockholm Sweden

• Motivation
• scientific programming
• Python vs other languages

• The anatomy of a program
• fundamentals
• flow diagrams

• Basic concepts - demo
• variables
• lists
• conditional statements
• loops
• files, input and output,

• Solving scientific problems with programming
• analyzing and visualizing data

• Tips to get started on your own
• editors and consoles
• anaconda - scientific programming packages
• learning resources
• finding your first “personal” project

Outline

A new, a vast, and a powerful language
is developed for the future use of
analysis, in which to wield its truths
so that these may become of more speedy
and accurate practical application for
the purposes of mankind than the means
hitherto in our possession have rendered
possible.

- Ada Lovelace

Get Inspired

Programming is a skill best
acquired by practice and
example rather than from books.

- Alan Turing

• The Innovators -
Walter Isaacson
• about the

history of
computing,
programming,
transistors, the
internet...

Inspirational reading about the history of computing

• Turing's Cathedral - George
Dyson
• about the first stored

memory digital electronic
computers and the role of
John Von Neumann

• The Information -
James Gleick
• about the

history of
information
theory

Some of you...

Expectations and Plan for the Course

• have zero experience programming

• are already confident, competent scientific programmers

• know a programming language, but it is not the one we are doing
• have some experience programming but are not confident about it

• We will...
• introduce/remind you of basics concepts in programming today
• give you some exposure to scientific programming
• use this basis for learning bioinformatics throughout the rest of the

course

• If you are new to programming
• spend extra time on the basics
• ask us and your peers for help
• research it independently

• If you are already advanced
• use the tools we give you to experiment on your own
• help your peers

• Scripting / file management
• programs that manage files, copying, creating folders,

importing data from text files, sorting images....
• Eliminate or reduce the cost of repetitive tasks

Uses for programming (specifically Python examples)

• Make use of other people's code
• A seating preference optimizer
• No executable download or web-based solution
• Someone coded this algorithm in Python though
• We can use it so long as we know how to run it

Uses for programming (specifically Python examples)

• Manipulating and searching through text
• algorithm parses text and ranks words according to their

frequency
• useful for learning a new language

Uses for programming (specifically Python examples)

• Applying and inventing creative data visualizations for
science

Uses for programming (specifically Python examples)

• Controlling hardware
• an LED that flashes with a desired frequency to

stimulate light-sensitive proteins

Uses for programming (specifically Python examples)

• Simulating things especially when we don't know the math
• many scientific questions are easier to simulate than

derive an analytical expression for
• e.g. for a given density of randomly placed red dots and

black dots, what is the fraction of pairs that land
within distance x of each other?

Uses for programming (specifically Python examples)

• Simulating things especially when we don't know the math
• many scientific questions are easier to simulate than derive an

analytical expression for
• e.g. for a given density of randomly placed red dots and black

dots, what is the fraction of pairs that land within distance x
of each other?

Uses for programming (specifically Python examples)

Mathematician's approach:
derive what's known as the
nearest neighbor distribution
using calculus and probability
theory

Programmer's approach:
Generate two sets of coordinates
and compute the distances
between them

• Process images!
• reconstructing super resolution microscopy data
• analyzing the images to detect certain features

automatically
• remove human bias by having the machine do it

Uses for programming (specifically Python examples)

• Machine learning/classification
• pick out structures in images and
• group structures into 2D classes

Uses for programming (specifically Python examples)

• Do symbolic math/algebra/calculus
• solving expressions like you would on paper
• similar to Wolfram Alpha or Mathematica
• free and integrated with the rest of Python

Uses for programming (specifically Python examples)

• Python is an Interpreted language
• Commands are executed by an interpreter
• Interpreter has subroutines already for translating new code into

machine language
• Means that time is spent on translation during the running
• Python is thus slower as a result!
• Syntax is easier to learn, code is more readable

• Compiled languages (e.g. C++, C, Java)
• A step is taken before running a new program to convert the code into

machine code
• Ultimately leads to faster performance
• Syntax is “closer to the machine” and thus more complex!
• Useful for big software projects and under-the-hood applications
• Most python libraries like numpy are written in precompiled code like

C++
• Python is a general language

• Some languages are optimized for certain tasks and can be worth using in
certain contexts e.g. R, matlab, mathematica...

• general languages have the advantage of being able to bring different
specialties together

Python compared to other languages

• Google
• “Python where we can, C++ where we must”
• an official server-side language along with C++, Java, and Go
• Google’s very first web-crawling spider was first written in Java 1.0 and was so

difficult that they rewrote it into Python. -Steven Levy “In the Plex”
• Spotify

• uses a combination of Python and C++ for backend framework
• uses Python for analytics - a module called Luigi
• preferred because of the fast development pipeline

• Reddit
• site was originally coded in Lisp - recoded into Python in 2005 shortly after

launch
• “There’s a library for everything. We’ve been learning a lot of these

technologies and a lot of these architectures as we go. And, so, when I don’t
understand connection pools, I can just find a library until I understand it
better myself and write our own. Don’t understand web frameworks, so we’ll use
someone else’s until we make our own…Python has an awesome crutch like that.” -
Steve Huffman

• Others big companies using Python
• Facebook, Quora, Dropbox, Netflix, Isntagram...

Industry usage

source: https://realpython.com/world-class-companies-using-python/#spotify

• Fast prototyping pipeline is ideal for
science
• less focus on end-product software for

users
• more focus on getting an answer,

visualizing data, inventing new
algorithms

• Large and growing free opensource
community
• more libraries due to large user base
• more resources to get help
• crowd-sourced maintenance rather than

centralized maintenance by commercial
developers (e.g. Matlab or MS Excel
VBA)

Prevalence in science

• Freedom to build any tool that you need

The Case for Learning Programming as Scientists/Engineers

• Socially active community of users and developers

• Professional caliber capability for free

• Easy to learn other languages once you know one

• A medium for learning (especially new math concepts)

• Understanding and reproducing other scientists' work

• Participate in our era - computing/information are the defininig
features of today

• An input or initial state
• A series of steps

• steps are carried out
in order one after the
other

• each step modifies the
state

• An output or final state

The anatomy of a program

Start

Step 1

Step 2

Step 3

End

Majority of real programs have decisions and loops

Start

my_base = 2

my_exponent = 8

solve = 1

counter = 0

counter <
my_exponen

t

solve = solve *
my_base

TRUEFALSE

print solve

counter = counter +
1End

write a program
that computes the
solution to a base
number (2) raised
to a power (8)

so
lv
e

=
2

co
un
t

er
 =

1

so
lv
e

=
4

co
un
t

er
 =

2

so
lv
e

=
8

co
un
t

er
 =

3

so
lv
e

=
16

co
un
t

er
 =

4

so
lv
e

=
32

co
un
t

er
 =

5

so
lv
e

=
64

co
un
t

er
 =

6

so
lv
e

=
12
8

co
un
t

er
 =

7

so
lv
e

=
25
6

co
un
t

er
 =

8

Python variables get defined when you assign them a value

• integers, floats, strings

Variables can be defined using different data types

Two kinds of equal signs: definition and evaluation

Conditional Statements (Decisions) and indentation syntax

Python modules, packages, and libraries

Python modules, packages, and libraries

Python modules, packages, and libraries

Python modules, packages, and libraries

cool or useful libraries to know about:
• numpy

• essential for all numerical problems, plotting, data management
• scipy

• lots of statistics, machine learning, and useful mathematical functions
• implement them first, understand them second - great way to learn new

math
• networkx

• library for generating and visualizing networks/graphs
• biopython

• library for dealing with biological sequence data
• matplotlib

• essential for dealing with images, plotting, making figures for
publications, animations...

• random
• functions for generating random numbers - very handy for simulation

• os
• short for “operating system” - very handy for manipulating files -

loading them, writing them, copying and pasting etc

Lists

Numpy - a library for arrays and matrices

• numpy for numerical/mathematical operations, linear
algebra, matrix operations

• lists for organization, looping
• a lot of overlap and conversion between them

Multidimensional arrays and lists

for Loops

while Loops

Implementing our exponentiator

Scientific programming - data and plotting

Scientific programming - data and plotting

Scientific programming - data and plotting

Scientific programming - data and plotting

• arrays and lists are like columns and rows in spreadsheets
• for loops are like the “drag” function in spreadsheets

Knowing where to start - tips for visualizing programs

• arrays and lists are like columns and rows in spreadsheets
• for loops are like the “drag” function in spreadsheets

Knowing where to start - tips for visualizing programs

• arrays and lists are like columns and rows in spreadsheets
• for loops are like the “drag” function in spreadsheets

Knowing where to start - tips for visualizing programs

• use a set_trace() command to explore a program at a specific line

Debugging by exploring from “within” a program

!

The important art of Googling

Use text returned from errors to identify location and type of error

Googling gets easier as you learn vocabulary

Borrow sample code and modify it

Tips for getting started on your own

•download and install a distribution of
Python
•anaconda is a good one (free, comes with
many scientific programming libraries)

•download and install a program editor (for
writing and saving code)
•Spyder - a good, free editing
application that we will use in our
exercises

Tip: come up with your own project - something you care about

• take a spreadsheet and convert it into Python
• pick something from a math or science textbook and
implement it in Python
• networks
• machine learning
• bioinformatics :)

• pick a boring/repetitive task that you have to do often
and automate it

• make something visual with matplotlib
• data visualization
• animation
• plot a nice mathematical function

Independent learning resources

• youtube
• thousands of tutorials on everything from basics
to specific libraries

• MOOCs - massive online open course
• Coursera
• EDX

• forums - ask questions and get answers from other
programmers
• stack overflow
• reddit

